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A constitutive equation for dilute emulsions is developed by considering the 
deformations, assumed infinitesimal, of a small droplet freely suspended in a 
time-dependent shearing flow. This equation is non-linear in the kinematic 
variables and gives rise to ‘fluid memory’ effects attributable to the droplet 
surface dynamics. Furthermore, it has the same form as the corresponding ex- 
pression for a dilute suspension of Hookean elastic spheres (Goddard & Miller 
1967), and reduces to a relation previously proposed by Schowalter, Chaffey & 
Brenner (1968) when time-dependent effects become small. 

Numerical solutions are also presented for the case of a small bubble in a 
steady extensional flow for the purpose of estimating the range of validity of the 
small deformation analysis. It is shown that, unlike the drag of a bubble which, 
in creeping motion, is known to be relatively insensitive to its exact shape, the 
macroscopic stress field in an emulsion is not well described by the present 
analysis unless the shapes of the deformed bubbles agree closely with those given 
by the first-order theory. Thus, the present rheological equation should prove of 
value in a qualitative rather than a quantitative sense. 

1. Introduction 
During the past twenty years a great deal has been learned about the proper 

formulation of rheological equations of state. Of particular importance have been 
the contributions of Oldroyd( 1950),Noll(1955),andof Truesdell & Toupin (1960), 
which have been discussed in Handbuch der Physik. As a consequence of this 
effort, a number of quite general and properly invariant constitutive equations 
have been developed such as those of No11 (1958) and of Ericksen (1959, 1960). 

There are, however, several important disadvantages which arise in connexion 
with the application of existing non-linear continuum theories to actual flow 
problems. In the first place, the resulting constitutive equations contain numerous 
coefficients which, in general, cannot be measured with current experimental 
techniques. In  addition, these coefficients, having been generated from a formal 
phenomenological approach, are usually devoid of any physical significance, and 
hence their dependence on the physical properties of the material is unknown. 
And finally, a dilemma is a t  once encountered when an attempt is made to 
accurately describe observations by retaining as much generality as possible in 
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the existing theories, in that increased generality usually renders the problem 
unsolvable whereas too much simplification inevitably results in a poor descrip- 
tion of the observed phenomena. 

It would seem, therefore, that the purely mathematical approach to the 
formulation of constitutive equations should be supplemented by techniques 
which would result in simple, appropriate models for particular classes of 
materials. The object of this article is then to explore this possibility for one such 
class, consisting of a dilute suspension of droplets of an incompressible Newtonian 
liquid in another such liquid of different viscosity. The rheology of this system 
has previously been studied by Oldroyd (1953) and, more recently, by Scho- 
Walter, Chaffey & Brenner (1968), but neither of these investigations has treated 
with sufficient generality the time-varying shearing flows with which we shall 
be concerned here. The related problem of the rheology of a dilute suspension 
of solid-like, viscoelastic spheres has recently been the subject of articles by 
Goddard 85 Miller (1967), and by Roscoe (1967), following the earlier work of 
Cerf (1951) and of Frohlich & Sack (1946). 

The aim of the present analysis is to determine how the deformation of small 
spherical fluid droplets (or bubbles) affects the macroscopic stress field in a time, 
varying shearing flow. We begin by considering the motion of a single droplet 
in such a flow. 

2. The motion of a single drop 
As first noted by Einstein (1906), the hydrodynamic interactions among 

suspended particles can be neglected for sufficiently dilute suspensions since 
these lead to terms in the resulting constitutive equation of second order in the 
volume fraction 4. It suffices for our purposes, therefore, to consider the creeping 
motion of a freely suspended droplet in a uniform, time-dependent shearing flow 
field. 

Let G be the magnitude of the shear flow, a the equivalent radius of the drop, 
p* its viscosity, po the viscosity of the external fluid and IT the interfacial tension. 
Then, non-dimensionalizing all velocities by Ga, all stresses within the drop by 
Gp* and those in the external fluid by Gp0, all distances by a and the time by 
G-l, we obtain, in the limit of negligible inertia effects, the following equations 
and boundary conditions relative to a set of axes that move with the centre of 
the drop: 

equation of the surface: r = 1 +ef  where f is order unity, (2.1) 
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where ni is the outer unit normal to the surface, R, and R, are its principal radii 
of curvature, pij is the stress tensor, and 

h =,uru"/,uo, k z a/,u,Ga, K-l E lV(r-ef) l .  

Also, the starred symbols refer to quantities within the drop and wi and eij 
denote, respectively, the vorticity and the rate of strain tensor of the undisturbed 
flow field. We shall suppose that wi and eij are functions of time, and that ekk = 0 
in view of the assumed incompressibility of the fluid. 

The problem stated above is, of course, not new having been considered already 
for small drop deformation by Chaffey, Brenner & Mason (1965)) by Chaffey & 
Brenner (1967) and by Cox (1969)) among others. Here, we shall extend the 
results of these studies by taking into account more fully the time-dependent 
effects of the flow at infinity and by carrying out the expansion to a higher-order 
deformation of the drop. As shown by Frankel (1968)) the same solution can also 
be arrived at  by first considering a special form for eij and wi and then generalizing 
the resulting expressions using the techniques of tensor analysis. However, in 
our presentation we shall adopt, with certain important modifications, the method 
of Cox (1969) which has the advantage of being more straightforward and some- 
what easier to follow than that chosen by Frankel (1968). 

We suppose that E ,  the parameter appearing in (2. l), the equation of the surface, 
is a small number. As shown by Cox (1969), E is O(k- l )  if k 9 1 and h is O( l ) ,  or 
O(h-l)  if k = O(1) and h B 1. Then by expanding all the unknown functions, 
such as ui, ni,f, R,, R,, etc., in a power series in e, we can construct, in the usual 
fashion, a regular perturbation solution to this problem. 

We begin by considering the case E E k-l .  The first term of the expansion, 
termed here the zeroth solution, can be obtained simply by assuming the drop to 
be spherical, solving (2.2)-(2.4) subject to the boundary conditions (2.5) and the 
tangential part of (2.6) evalued at r = 1, and then determining the deformation 
to first order in e from the normal stress balance, i.e. the component of (2.6) 
along ni. As shown by Frankel (1968) and by Cox (1969), this solution involves 
only the spherical harmonics of order two, p(o)3, @)3, pJ0)  and #Ao). Here we let 

where, following Cox (1969), we require that TjZ be symmetric, and that TI:) = 0 
since r--1 satisfies Laplace's equation. The remaining coefficients Sjz, T)E*, and 
Sj$* have similar properties. Further, to first order in e,  f is a surface spherical 
harmonic of order two, hence 
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As shown by Frankel (1968), 

5 2(16h+ 19) xi:* = - JX7 6(2h + 3) - (2h + 3) (19h + 16) 

(2.9b) 

(2.9cj 

(2.9d) 

These expressions are somewhat more general than those obtained by Cox 
(1969) in that they require only that eFt2 be O(E), whereas Cox imposed the 
additional restriction that eaPl2lat also be O(e). As aresult, the coefficient of the 
bracketed term in his equation (5.25) agrees with that shown above in (2.9d) 
only when h - co. Also, it  is worth noting that, by retaining the term afiat of 
(2.5) in the zeroth-order solution, i.e. by treating eaFj2lat as O(l) ,  it was found 
possible to arrive at  (2.9) in a single step, in contrast to Cox's development in 
which two terms of the expansion were required, the second only partially, 
before his equation (5.25) could be obtained. 

We now proceed to the first-order solution which involves only spherical 
harmonics of order two andfour (Frankel 1968). The procedure is the same as that 
outlined above except that care has to be exercised in applying the boundary 
conditions at  r = 1 + cf. As shown by Cox (1969)' 

with similar expressions for the other variables. Also, 

x .  a p  
r axxi ni = --Z-e-+0(8), K = 1+0(€2),  

while (Frankel 1968) 

where the constant term - ( 6 ~ / 5 )  Fj2FE($ has been added to (2.10) because of 
the requirement that the volume of the drop be independent of e. Consequently 
(Frankel 1968) 

Using Lamb's general solution to the creeping-flow equations as given, for 
example, by Cox (1969), and applying the boundary conditions leads then to a 
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set of algebraic equations for the coefficients of the harmonics. For example, the 
requirement that ui = u: on the surface becomes: 

3P)2xlxm{eiPxP + [SOX$'; - 3T$'i + $Tgi*] xPxqxi - [24S$ + 6S$i* + 7 15T(O)-*] P?. x P } 
(1) aT(1)+ZT(1)*]x x x.+[6&"l) ~ S ' ? " - ~ T ' ? * ] X ~  = 0, (2.12) 

+ [ - 1 5 S p q + z  P p  p q  2, pi - 8% 7 P% 

aside from some terms arising from the fourth-order harmonics that appear in 
the expressions for u$l) and uil'*. Multiplying through by xjdQ where SZ is a solid 
angle, and integrating over the surface of a unit sphere then results in 

\ I  

with use of the well-known orthogonality relations 

and the definition Y d [ b i j ]  i [b i j  + bji - &3ijblJ. 

Likewise, multiplying through by xixsx,dC2 and integrating gives 

Ti. )  - 6S<1) 23 - 4S$* - $-T$i)* = 0. (2.14) 

I n  a similar fashion, we obtain from the kinematic condition in (2.5),  

On solving these algebraic equations we finally arrive at  

lO(4h-9 )  
Yd[F$$  e p j ]  8F'i:.) 4 0 ( h  + 1 )  '8) + 7 ( 2 h  + 3)2 E -  =-- 

( 2 h  + 3 )  (19h  + 16)  
{ E P S i q $  + EPsjFg;} - 

at 
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Since, as will be seen below, the expression for the stress of a dilute suspension 
only involves Ti,, the corresponding formulae for the coefficients of the remaining 
spherical harmonics need not concern us here. 

So far, we have restricted our attention to the case E = k-l .  However, when 
k is O(1) but h 9 1, a slightly different approach is indicated because, here, the 
drop remains almost spherical not by virtue of the large surface tension forces 
but rather on account of the large viscosity of the interior phase. Letting then 
e = A-1, we proceed as before except that now we require that the zeroth solution 
satisfy, at  r = 1, both the tangential and normal components of (2.6) and that 
the fb-st-order deformation be determined from the kinematic condition of (2.5). 
This is so because, when A -+ 03, the drop behaves essentially as a rotating solid 
sphere, so that, to a first approximation, the quantity upi  evaluated on its 
surface becomes O(h-l) which then balances the term eaf/at. This procedure, 
which can be justified rigorously, yields the following results : 

(2.20) 

(2.22) 

Evidently, the above are very similar to the corresponding expressions for the 
case E = k-l, But considerably simpler. Also, these simplify still further when 
k < 1. Note from (2.20) that, as already discussed by Cox (1969), no steady state 
solution exists to the small deformation analysis for the case h 9 1, k N O ( l ) ,  
if the shear flow far from the drop is irrotational and eij 4 0. 

3. The constitutive equation 
The development of the previous section will now be utilized to formulate a 

continuum theory for the rheology of dilute emulsions. Wall effects and inter- 
actions among droplets will be neglected. 

We consider a volume V, large enough to contain many drops, yet small enough 
so that its linear dimension V t  is small compared with the distance over which the 
bulk properties of the emulsion, such as the stress and the rate of strain, change 
appreciably. As discussed by Hashin (1964), Roscoe (1967), Goddard & Miller 
(1967) and, in considerable detail, by Batchelor (1970), the appropriate definition 
for these bulk properties involves then a volume average of the corresponding 
local quantities within the space V,. For example, the bulk velocity gradient 
tensor (au,/ax,) becomes 
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A similar definition applies for the bulk rate of strain tensor (eij) and for the 
bulk stress (pi j ) .  Then, as already shown by, for example, Batchelor (1970), if 
the fluid external to the drops is Newtonian and inertia effects are neglected, 

Yd[pikx,n,  - 2pouinj] dA, (3.2) 
1 =f% 

where A ,  is the surface of a drop, A ,  is an arbitrary surface enclosing a single 
drop, and the summation is over all the drops within V,. 

It is evident that the right-hand side of (3.2) represents the extra deviatoric 
stress resulting from the presence of the individual drops. For the case of non- 
interacting drops, it can be evaluated simply by choosing A ,  to be a sphere of 
largeradiusr, using the results of the previous section for a single drop, and then 
adding the contributions from all the drops contained within q. In  this way, 
introducing the usual isotropic term -psi, and reverting back to dimensional 
quantities, we arrive at 

(Pi39 = - Psi, + 2PoKeij) - #mijh (3.3) 

where $ denotes the volume fraction occupied by the drops in the emulsion. 
Finally, to obtain T,,, and thereby complete the derivation of the constitutive 

equation for the dilute emulsion, we refer to the dimensional form of (2.9a), 
(2.9d), (2.18) and (2.19) for the case B = k-l ,  or of (2.20), (2.21) and (2.22) for 
the case E = A-l. Noting that the bulk rate of strain tensor, and eij, the tensor 
appearing in these expressions differ at  most by O(q5), we easily deduce the follow- 
ing results, after replacing all time derivatives a/at by the substantial derivative 
a/at +u,alax, since we now revert to fixed co-ordinate axes. 

Case 1. k 9 1, E = k-l, h arbitrary but not too large 

Let T.. a3 = T(0) + k-lT$) + . . . , qj = G(Fi:) + k-lF$) + . . . ). 
Then, dropping the brackets in (3.3) with the understanding that the tensors 
pij  and eij will now refer to the corresponding bulk quantities, we find that 

P y d [ q p  F,,] + O(Gk-') 
288(h  - 6) +- 
7( 2h + 3)' 

where Fij satisfies the expression 

PYd[Fi ,Fpj]  +O(Gk-'), (3.5) 
36( 137h3 + 624h2 + 741h + 248) 

35(21(+3)(19h+16)(h+l)  
+- 
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and p = a,u,/c = (kG)-l is a parameter having the units 6f time. As is expected 
in such cases (Predrickson 1964; Goddard & Miller 1967), the governing equation 
for Fii involves the Jaumann derivative 

which is seen to arise naturally from our development. 

Case 2 .  h 9 1, B = A-1, Ic arbitrary but not too large 

e = A-1, T.. = T(!Y + h-1T(.!) + . . . , e. = $'$) + h-lF$) + . . . . 
23 v Let 

Then, pii = -p& + 2,u,eii +/A,$ 

x {5eij + 12(ph)-l Fi i++- lYd[Fipe , i ]  + O(GW2)) ,  (3.6) 

(3.7) 

These rheological equations, (3.4)-( 3.7)) summarize then the principal results 
of our analysis. They are identical in form to a constitutive equation recently 
derived by Goddard & Miller (1967) for a dilute suspension of Hookean elastic 
particles, and are also consistent with the findings of Oldroyd (1958) in that the 
relaxation time of the suspension, which is proportional to p or to /3h according 
to whether case 1 or case 2 is being examined, is seen to increase sharply as the 
surface tension at the droplet interface approaches zero. 

Of course, in their full generality, the constitutive equations presented above 
are difficult to handle. In some instances, they can be integrated using a calculus 
for the Jaumann derivative which has been discussed in some detail by Goddard & 
Miller (1966). However, for the most part, their usefulness appears to be limited 
to special cases. For example for steady or for weakly time-dependent flows, 
the term containing the Jaumann derivative in (3.5) is generally O(Gk- l ) , t  
hence by successive substitutions, 

where 9(/3h)-l  Fij + 9% -9T - - ge ij - -7- 10h-1Y~[Eli ,e , i ]+O(Gh-2) .  

19h + 16 I e d j  - (2h + 3) (19h + 16) geij 
p, l7.. = 

23 24(h+ 1) 40(h+ 1) 

/3Yd[ePiepj]  + 0 ( G k 2 )  
1202h3+ 3589h2+ 3191h+ 768 
~- 140(2h73)(n + 17-  

Therefore, (3.4) simplifies to 

3(19h+ 16) (25h2+ 41h+ 4) Y d [ e i , e p j ]  + O ( G 2 k 1 ) } ,  (3.9) 
140(h + 1)3 

+- 
which is identical to a relation deduced by Schowalter et al. (1968) from a steady- 
state hydrodynamical analysis. 

7 As emphasized in $2  following equations (2.9), the term paFtj/at could be 0 ( 1 )  rathor 
than O(E)  if' the flow is unsteady. 
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The above can also be recast into a different form. For, if 

Pleipepjl leijl7 

then, operating on (3.9) with (1 + A 9 / 9 t ) ,  where 

P, 
(2h + 3) (19h + 16) 

40(h + 1)  
A = 

we obtain, to the present order of approximation, 

73 

(3.10) 

(3.11) 

Equation (3.12) represents also a particular case of a constitutive equation 
proposed by Oldroyd (1958) who showed that a fluid whose behaviour is pre- 
cisely described by (3.12) has unequal normal stresses in a steady laminar shearing 
flow, and a shear dependent viscosity that decreases with increasing rates of 
shear. In  addition, Oldroyd showed that such a fluid exhibits the positive 
Weissenberg effect (rising of the fluid surface at the inner cylinder) when confined 
between vertical cylinders with the inner one rotating and of sufficiently small 
diameter, and that its behaviour in a time-dependent flow is characterized by the 
relaxation time, A, which approaches infinity as the interfacial tension of the 
droplet interface approaches zero. This last result should not be taken at  face 
value, however, because, evidently, the present analysis ceases to apply when the 
interfacial tension becomes small. 

Another simplification results if the flow is irrotational and homogeneous, for 
then wi = 0, and eii, and, therefore, is independent of position. Consequently, 
since the Jaumann derivative 9/9t reduces here to a/at, (3.5) and (3.7) are 
amenable to solution. In  particular, if we consider the case in which a sample of 
the emulsion, at rest when the time t equals zero, is suddenly subjected to a steady 
bulk straining motion, it is easy to see from (3.4) to (3.7) that the fluid will react 
to the sudden change in the flow conditions by setting up extra viscous stresses 
linear in eii which, however, will diminish with increasing time to be replaced by 
non-Newtonian stresses, quadratic in eii. The relaxation times for this process7 
which incidentally is consistent with observations on polymeric materials and 
other viscoelastic fluids, are A and $A, where A is given by (3.1 1). 

The bulk elastic property of the emulsion is probably the most important 
feature of our constitutive equations (3.4)-(3.7). This is further borne out by the 
remarkable similarity, already briefly referred to earlier, between the present 
results and a constitutive equation derived by Goddard & Miller (1967) for a 
suspension of Hookean elastic particles, which has the same form as (3.4) and 
(3.5), and involves a characteristic time r = 3,uO/2K where K is the elastic 
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modulus of the particles. I n  the present case, such elastic behaviour results of 
course from the presence of a finite interfacial tension which always acts so as 
to oppose any deformation of a drop from the spherical shape. 

4. Numerical calculation of the drop shape in a steady pure straining 
motion 

If now O J . ~  = 0, and eiij is chosen such that el, = eZ2 = - G ,  e33 = 2G with its 
remaining elements set equal to zero, then, in view of (3.9) which, in the present 
case, is identical with (3.4) and (3.5) to O(k-2), the only non-zero elements of the 
bulk stress tensor pii become 

3( 19h + 1 6 )  (25h2 + 41h + 4) + Z S O ( A  + 113 - $k-l + $ O ( k 2 ) ) ,  (4.1) 

where, as before, k = cr/p,Ga. I n  particular, if h = 0 (corresponding to  gas 
bubbles) 

p33-pll = p33-p22 = 6G,u0{l + $ [ l  +$+k-1+O(k-2)]}. 

The order k-2 term in (4.2) could be computed in principle by extending the 
perturbation analysis of $ 2  to  O(k-2); however, instead of proceeding in this 
fashion, we shall estimate the magnitude of this correction, and hence the ex- 
pected region of validity of the constitutive equation (3.4) by solving numerically 
the boundary-value problem given by (2.1)-(2.6) for a bubble of steady shape, 
using the expression for eii given above. The numerical solution, which is not 
limited to  small deformations of the bubble-fluid interface, was computed for 
successively large values of k-1 until, as discussed more fully below, the numerical 
scheme could no longer be applied. Since the findings of this study are of interest 
in their own right as well as for comparison with (4.2), the computational outline 
and results are presented below. 

The analysis was performed in terms of the dimensionless variables of $ 2  and 
the dimensionless stream function $ given by, in spherical co-ordinates, 

( 4 4  

(4.3) 

where 7 denotes cos19. Also, use was made of expansions in terms of Legendre 
polynomials, P,(7), and their integrals, Qn(q), defined by 

The droplet surface was denoted by r = g ( v ) ,  where the function g ( 7 )  had to be 
determined numerically. 

The general solution of the creeping-flow equation, 
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taking into account the symmetry of the flow and truncating the expansion after 
the 2m-th term, is 

m 

n= 1 
31. = 2r3Q2(q) + I: {cnr2-2n + c n+rnr-2nl & 2 n ( r )  (4.5) 

and the corresponding expression for the pressure is 

The boundary conditions are as follows: the normal velocity condition is 

$ = 0 at  r = g(7); (4.7) 

the continuity of tangential stress, a t  r = g(r), is 

(4.8) 

and the normal stress balance becomes 

where the first term on the left results from the assumption of an ideal gas within 
the bubble. Furthermore, it can be shown that (Frankel 1968) 

The system (4.5) to (4.10) was solved using a method of moments with the 
Legendre polynomials P2,(q) as weight functions, together with an iterative 
successive substitutions routine for satisfying the normal stress balance. To 
initiate the iteration, a trial function g(O)(r) was chosen. Next, (4.7) and (4.8) 
with r = g(O)(r) were successively multiplied by PZk, 1 5 k 5 m, and integrated 
with respect to 7 from 0 to 1. This resulted in a linear system of 2m algebraic 
equations. The solution vector of this system, the trial values c:), was now 
substituted into (4.9) to produce a non-linear equation for the function g( l ) (~) ,  
which was solved iteratively using the scheme 

( ( 1  -r2)g)i<i))’-4!&ii) = R(g$’),‘$), (4.11) 

where R denotes the right-hand side, a functional of g$], and 

g‘chf = 9‘0). (4.12) 

Convergence was usually attained in this manner within a few iterations, pro- 
vided the trial function g(O)(r) was sufficiently close to g(l)(q). The entire plan was 
then repeated with g(O) replaced by g(l), and iterations were continued until the 
desired degree of convergence was obtained. 

The results for g(7) are shown in figure 1 for several values of k-l. It will be 
noted tha.t two distinct types of deformations are possible in the present flow 
field, withnegativevalues of k-lresulting in bubbles that are oblate or flattened at 
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the poles, whereas positive values produce bubbles that are prolate or cigar-shaped. 
This, of course, is in qualitative accord with the first-order perturbation theory, 
except that the surfaces in figure 1 are not spheroids since first-order theory was 
found to hold only if Ik-ll < 0.02. 

90- 
4 

FIGURE 1. The surface of a bubble suspended in an extensional flow for various values of the 
dimensionless strain rate 7,-1. 

As a rule, the numerical scheme converged readily for moderate values of 
Ik-l], but failed at  certain critical values that depended on the sign of k-l. 
Failure for negative k-l w;hs reached at - 0.1 , even though, as shown in figure 1, 
an apparent equilibrium configuration could still be attained after several 
iterations. Further iterations, however, revealed that this configuration was not 
stable since deformation continued and in fact accelerated until the computations 
had to be terminated. On the other hand, the behaviour noted for positive k-l 
was somewhat different in that it was found impossible to obtain an accurate 
representation for the stream function a t  k-l = 0.08 even with the largest 
system of polynomials considered, corresponding to m = 15 in (4.5). Thus, 
although large deformations were achieved for k-l > 0, as shown in figure 1, the 
state of continuous deformation noted at k-l = - 0.1 could not be observed. 

It is noteworthy that the failure of the numerical procedure occurred at values 
of I k-ll reasonably close to that given by Taylor’s (1932) approximate empirical 
criterion for droplet break-up which, in this case, would predict break-up at 
[k-1[ = 0-125. Experimentally, bubbles and droplets composed of very low 
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viscosity fluids are known to develop pointed ends in a hyperbolic Aow (Taylor 
1934) when L - B  

0.26 < __ < 0.44, 
L+B 

(4.13) 

with L and B representing the length and breadth of the deformed bubble, 

0.07 < Ik-ll < 0-10. (4.14) respectively, and when 

The observed values of ( L  - B)/(L + B) after several iterations at k-l = - 0.1 
was 0-26, and the corresponding value for the largest positive convergent k-1 

(k-l = 0.06) was 0.21. The numerical findings are thus within the range of 
observed values. 

k-' 

- 0.005 
- 0.02 
- 0.05 
- 0.06 
- 0.08 
+ 0.02 
+ 0.06 

Numerical results 

0.006 
0-022 
0-039 
0.040 
0.037 

- 0.032 
- 0.138 

TABLE 1. Values of c1 + 2 

- 4Bk-1 

(equation (4.16)) 

0.007 
0.027 
0-069 
0.082 
0.110 

- 0.027 
- 0.082 

35 

These conclusions are of course tentative, since it is by no means certain that 
the lack of convergence of our numerical scheme should necessarily be attributed 
to drop break-up. Rather, the difficulties described above could result from other 
causes, for example, straightforward numerical instabilities, and/or the use of 
the series (4.5) and (4.6) which, although adequate for spheroidal shapes, become 
increasingly less desirable as representations of the solution when the bubble 
develops pointed ends, unless perhaps a prohibitive large number of terms are 
retained. This question, though, deserves further study. 

The numerical results can finally be used to compute the stresses in a dilute 
suspension of bubbles in the present flow field, for, as can be shown from the 
definition of pij, equations (3.2) and (3.3), the only non-zero elements of the 
bulk dimensional stress are given by 

(4.15) 

Hence, to the extent that the perturbation procedure of 9 2 is valid, c1 is given by, 

c1 = - 2(1+24k-1 (4.16) 
c.f. (4.2) and (4.15), 

36 )+o(k-2)*  

Comparison of cl, as predicted by (4. IS),? with that obtained from the numerical 
results is made in table 1 where the differences between the corresponding values 
in the second and the third column give some indication of the magnitude of the 

term in (4.16). This term appears to have a rather large coefficient. It will 
be noted that the perturbation procedure is unreliable for Ik-l[ > 0.02 where, 

t Qualitative similar results are obtained if (3.4) and (3.5) are used in lieu of (3.9) t o  
derive an analytical expression for cl. 
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as mentioned earlier, the first-order theory also fails to  accurately predict the 
shape of the deformed droplet. 
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